技术文章 > Python技术 > Python基础 > 正文

python如何做三维图

爱喝马黛茶的安东尼

Python三维绘图

在遇到三维数据时,三维图像能给我们对数据带来更加深入地理解。python的matplotlib库就包含了丰富的三维绘图工具。

1、创建三维坐标轴对象Axes3D

创建Axes3D主要有两种方式,一种是利用关键字projection='3d'l来实现,另一种则是通过从mpl_toolkits.mplot3d导入对象Axes3D来实现,目的都是生成具有三维格式的对象Axes3D。

#方法一,利用关键字
from matplotlib import pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
#定义坐标轴
fig = plt.figure()
ax1 = plt.axes(projection='3d')
#ax = fig.add_subplot(111,projection='3d')  #这种方法也可以画多个子图
#方法二,利用三维轴方法
from matplotlib import pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
#定义图像和三维格式坐标轴
fig=plt.figure()
ax2 = Axes3D(fig)

2、三维曲线和散点

随后在定义的坐标轴上画图:

import numpy as np
z = np.linspace(0,13,1000)
x = 5*np.sin(z)
y = 5*np.cos(z)
zd = 13*np.random.random(100)
xd = 5*np.sin(zd)
yd = 5*np.cos(zd)
ax1.scatter3D(xd,yd,zd, cmap='Blues')  #绘制散点图
ax1.plot3D(x,y,z,'gray')    #绘制空间曲线
plt.show()

c7ee218c70559c76a703bd5352c7711.png

3、三维曲面

下一步画三维曲面:

fig = plt.figure()  #定义新的三维坐标轴
ax3 = plt.axes(projection='3d')
#定义三维数据
xx = np.arange(-5,5,0.5)
yy = np.arange(-5,5,0.5)
X, Y = np.meshgrid(xx, yy)
Z = np.sin(X)+np.cos(Y)
#作图
ax3.plot_surface(X,Y,Z,cmap='rainbow')
#ax3.contour(X,Y,Z, zdim='z',offset=-2,cmap='rainbow)   #等高线图,要设置offset,为Z的最小值
plt.show()

f9527aea64241d8b0d6538a88e927d0.png

如果加入渲染时的步长,会得到更加清晰细腻的图像:

ax3.plot_surface(X,Y,Z,rstride = 1, cstride = 1,cmap='rainbow'),其中的row和cloum_stride为横竖方向的绘图采样步长,越小绘图越精细。

b9a0631489d3806dfe156a9561a7240.png

4、等高线

同时还可以将等高线投影到不同的面上:

from matplotlib import pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
#定义坐标轴
fig4 = plt.figure()
ax4 = plt.axes(projection='3d')
#生成三维数据
xx = np.arange(-5,5,0.1)
yy = np.arange(-5,5,0.1)
X, Y = np.meshgrid(xx, yy)
Z = np.sin(np.sqrt(X**2+Y**2))
#作图
ax4.plot_surface(X,Y,Z,alpha=0.3,cmap='winter')     #生成表面, alpha 用于控制透明度
ax4.contour(X,Y,Z,zdir='z', offset=-3,cmap="rainbow")  #生成z方向投影,投到x-y平面
ax4.contour(X,Y,Z,zdir='x', offset=-6,cmap="rainbow")  #生成x方向投影,投到y-z平面
ax4.contour(X,Y,Z,zdir='y', offset=6,cmap="rainbow")   #生成y方向投影,投到x-z平面
#ax4.contourf(X,Y,Z,zdir='y', offset=6,cmap="rainbow")   #生成y方向投影填充,投到x-z平面,contourf()函数
#设定显示范围
ax4.set_xlabel('X')
ax4.set_xlim(-6, 4)  #拉开坐标轴范围显示投影
ax4.set_ylabel('Y')
ax4.set_ylim(-4, 6)
ax4.set_zlabel('Z')
ax4.set_zlim(-3, 3)
plt.show()

e740f60f8fab4767619f5389f8f9b84.png

5、随机散点图

可以利用scatter()生成各种不同大小,颜色的散点图,其参数如下:

#函数定义
matplotlib.pyplot.scatter(x, y, 
s=None,   #散点的大小 array  scalar
c=None,   #颜色序列   array、sequency
marker=None,   #点的样式
cmap=None,    #colormap 颜色样式
norm=None,    #归一化  归一化的颜色camp
vmin=None, vmax=None,    #对应上面的归一化范围
 alpha=None,     #透明度
linewidths=None,   #线宽
verts=None,   #
edgecolors=None,  #边缘颜色
data=None, 
**kwargs
)
#ref:https://matplotlib.org/api/_as_gen/matplotlib.pyplot.scatter.html
from matplotlib import pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
#定义坐标轴
fig4 = plt.figure()
ax4 = plt.axes(projection='3d')
#生成三维数据
xx = np.random.random(20)*10-5   #取100个随机数,范围在5~5之间
yy = np.random.random(20)*10-5
X, Y = np.meshgrid(xx, yy)
Z = np.sin(np.sqrt(X**2+Y**2))
#作图
ax4.scatter(X,Y,Z,alpha=0.3,c=np.random.random(400),s=np.random.randint(10,20, size=(20, 40)))   
#生成散点.利用c控制颜色序列,s控制大小
#设定显示范围
plt.show()

3b19aa89547e6533c5231f4f6f20079.png

众多python培训视频,尽在python学习网,欢迎在线学习!

免费视频教程
本文原创发布python学习网,转载请注明出处,感谢您的尊重!
相关文章
 初识Python-Python的历史与优缺点
 Python中文分词工具
 Python中文分词的原理你知道吗?
 什么是网络协议
 python中的去除重复项的操作
相关视频章节
 使用Pycharm里的Database对数据库进行可视化操作
 Django ORM常用操作介绍(新手必看)
 Pycharm新手教程,只需要看这篇就够了
 使用pycharm创建自己的第一个django项目
 Django2.0入门教程
视频教程分类