python中最小二乘法如何理解?
宋雪维
2021-02-19 10:58:184571浏览 · 0收藏 · 0评论
python中在实现一元线性回归时会使用最小二乘法,那你知道最小二乘法是什么吗。其实最小二乘法为分类回归算法的基础,从求解线性透视图中的消失点,m元n次函数的拟合,包括后来学到的神经网络,其思想归根结底全都是最小二乘法。本文向大家介绍python中的最小二乘法。
一、最小二乘法是什么?
最小二乘法Least Square Method,做为分类回归算法的基础,有着悠久的历史(由马里·勒让德于1806年提出)。
二、最小二乘法实现原理:
通过最小化误差的平方和寻找数据的最佳函数匹配。
三、最小二乘法功能
利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。
最小二乘法还可用于曲线拟合。其他一些优化问题也可通过最小化能量或化熵用最小二乘法来表达。
四、最小二乘法两种视角描述:“多线→一点”视角与“多点→一线”视角
1、已知多条近似交汇于同一个点的直线,想求解出一个近似交点:寻找到一个距离所有直线距离平方和最小的点,该点即最小二乘解;
2、已知多个近似分布于同一直线上的点,想拟合出一个直线方程:设该直线方程为y=kx+b,调整参数k和b,使得所有点到该直线的距离平方之和最小,设此时满足要求的k=k0,b=b0,则直线方程为y=k0x+b0。
以上就是python中最小二乘法的有关介绍,希望能对你有所帮助哟~
关注公众号,随时随地在线学习